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ABSTRACT

The finite-volume and finite-difference implementations of high-order accurate essentially

non-oscillatory shock-capturing schemes are discussed and compared. Results obtained with

fourth-order accurate algorithms based on both formulations are examined for accuracy,

sensitivity to grid irregularities, resolution of waves that are oblique to the mesh, and com-

putational efficiency. Some algorithm modifications that may be required for a given appli-

cation are suggested. Conclusions that pertain to the relative merits of both formulations

are drawn, and some circumstances for which each might be useful are noted.
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Introduction

Two basic formulations, finite-volume and finite-difference, for the implemen-
tation of high-order accurate, essentially non-oscillatory (ENO) shock-capturing

schemes have been the subject of considerable interest in recent years. These

schemes achieve high-order spatial accuracy in smooth regions by means of a piece-

wise polynomial approximation operator that is also designed to avoid oscillations
associated with interpolation across steep gradients. As such, they are well suited

for the study of aeroacoustic and transition-related problems and may serve as an

alternative to spectral methods for solving such problems when shocks or complex

geometries are involved.

The finite-volume implementation, first presented by Harten et al.1 , is preferred

for its strict adherence to the integral form in which conservation laws are defined.
The primary motivation for the use of the finite-difference approach of Shu and

Osher2 is computational efficiency. These formulations are briefly described, after
which results of their numerical implementations are presented for comparison.
The intent of this work is to acquaint the reader with the relative merits of both

formulations, the circumstances for which each might be useful, and some details of
implementation that may be required for a given application. The performances

of both algorithms are compared for accuracy, sensitivity to grid irregularities,
resolution of waves that are oblique to the mesh, and computational efficiency.

Discrete Formulations

The finite-volume and finite-difference algorithms compared in this paper differ

fundamentally in the way a system of equations is solved. In both cases, a weak

solution of a system of conservation laws is ultimately obtained. The conservation
of some quantity U in a spatial domain D can be written

5i U dV F - n" f dS (1)
D Ja D

where P is the flux, MD is the boundary of D, dV is a volume element of D, dS is an

element of surface area on oD, and n' denotes the outward unit normal to OD.

In the finite-volume approach, the conservation law itself in Eq. (1) is approxi-

mated. The spatial domain is discretized, D = {Di), which results in

1.i I F1  dS (2)
1i fm



where Vi is the volume of Di and

Ui U dV(3)

is the cell average of U in Di. Eq. (2) is solved for all i, which yields a solution {Uj
of cell averages.

In the finite-difference approach, a pointwise solution is desired. To this end, time

differentiation and spatial integration are interchanged in Eq. (2), the divergence

theorem is applied on the right-hand side and, in the limit as Vi --+ 0,

4 F- (4)

Special care must be taken when this formulation is implemented, because flux

conservation is not as readily achieved as in Eq. (2).

For integration in time, the method of lines will be employed for Eqs. (2) and
(4). High-order accurate Runge-Kutta methods, developed by Shu and Osher2 , are
implemented in the finite-volume and finite-difference schemes to be compared in

this paper. Hence, the brief description of the schemes to follow will concern only
the right-hand sides of Eqs. (2) and (4).

Both discrete algorithms involve a reconstruction step followed by an evolution

step. What is meant by reconstruction is a high-order accurate polynomial approx-
imation at some point in time. In the finite-volume formulation, the solution U is
reconstructed from the cell averages to high order within each cell Di and evaluated

on the boundary aD1 . The evolution step involves the solutions of the local Riemann
problems that arise from the piecewise continuous reconstruction (See, e.g., Refs. 1

and 3 and the references therein.). The spatial integration along the boundary 9D, is
achieved by a correspondingly high-order quadrature. This method will be referred
to throughout the paper as ENO-FV. Shu and Osher 2,4 have proposed the use of

the finite-difference formulation in Eq. (4), in which the reconstruction operator is

applied directly to the pointwise flux values. The evolution step arises from a flux-
vector splitting strategy that is built into the reconstruction. The term ENO-FD

will be used tM refer to this finite-difference scheme. The pointwise nature of this

formulation eliminates the need for dealing with cell averages or the integration of
a flux over the boundary of a cell. These distinctions between the two f3rmulations

become most important with regard to the issue of cost, and will be discussed in
more detail in a later section.
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The most unique aspect of ENO reconstruction operators is their use of adaptive

stenciling. At the i-th discrete location, the reconstruction set that determines a

polynomial Pi is chosen by a searching algorithm in which decisions are based

on local smoothness criteria. For example, in one dimension, where the { Di } are

intervals on the Real line, Harten et al.' have suggested a hierarchical algorithm

that is based on local sets of k-th divided differences {I6}, where i - m < j < i + m,

k = 1,2,... ,1m, and m is the desired degree of 'Pi. If a contiguous one-dimensional

stencil for 'Pi is defined by its left-most index im, then the first-order choice is clearly

il = i. Then, for k = 2,..
Sik_1 -- 1, if I - I < Ib 1 (5)

1ik-1{ , otherwise
Because this algorithm allows the reconstruction stencil to shift freely with the

detection of any numerical gradient, it will be referred to as "freely adaptive."

Reasons for modifying this search will become apparent.

A few observations that concern the available types of reconstruction operators

are in order. Within the Shu-Osher approach, when conservation is desired, the

implementation of the high-order reconstruction operator requires a uniform compu-

tational mesh. Therefore, the application of the ENO-FD algorithm on a non-uniform

physical domain requires a sufficiently smooth transformation to a uniform mesh if

third-order or higher accuracy is desired. An analogous form of this transformational

reconstruction (TR) can also be implemented within the finite-volume formulation. In

this case, the reconstruction operator is applied to a set of volume-weighted averages

{i Ui}, and therefore sufficient smoothness in a spatial transformation is required.5

However, another option exists for the ENO-FV algorithm. The polynomial approxi-

mation can be performed in physical space, which releases such burdensome restric-

tions on grid smoothness.6 ' 7, 8 This latter procedure will be referred to as physical

reconstruction (PR). Although this PR operator poses no problems in one dimension,

its implementation in multidimensional space can be quite complex when the imple-

mentation must allow for local stencil adaptation.7,8 However, the multidimensional,

finite-volume TR operator can be readily implemented because it is defined as a prod-

uct of one-dimensional operators. 5 When required, the finite-volume algorithms will

be distinguished as ENO-FV-TR and ENO-FV-PR.

One-Dimensional Rarefaction Wave

The first test case involves the solution of the Euler equations of gas dynamics in

one spatial dimension, as it pertains to the movement of a right-traveling rarefaction
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wave through a domain of highly varying mesh spacing. The effects of two mesh

transformations will be examined. One transformation has the required smoothness

for a fourth-order TR operator and the other does not.

For both transformations, the uniform computational domain is given by

{-6 < < _ 6}. The subset { -4 < _< 4 } is divided into five intervals:

[-4, -3], [-3, -1], [-1,1], [1,3], and [3,4]. In each of these interior intervals, the map-

ping x x(ý) causes the physical mesh width Ax to vary rapidly; the intervals

{-6 < • < -4} and {4 < ý _< 61 are mapped uniformly.

In the k-th interior interval, the first transformation is of the form

x(V)= k + sin [9- (V-k)W (6)

where 4 is an element of the set {-4, -2,0,2, 4}. The mesh spacing Ax in the uniform

regions (fore and aft) is determined such that the connections at ý = ±4 are smooth.

To generate a smoother grid on { -4 < ý 5 4 1, a mapping of the following form

is used:

x(V)= a - ]- + 3215 sin (r) - - sin (27r#) + 1 sin (3rý) (7)

The parameters a and /3 are determined so that the ratio of the maximum to

minimum values of xf are identical for the two grids, and that the physical distance

between x(-4) and x(4) is the same for both.

Fig. 1(a) illustrates the similar behavior of these two transformations on

0 < . < 2. The seemingly odd formula in Eq. (7) was chosen because its derivative

is of the form

x =a - sin6 6

The transformation derivatives are plotted on the same interval in Fig. 1(b). The

value i represents the derivative normalized by its maximum value. For the

transformation (6), xt is discontinuous for ý = ±=1, ±3, which makes for an overall

C' grid. The mesh produced by Eq. (7) will be C' on the nonuniform region and C 6

overall, because of the connections with the uniform intervals at ý = +4.

The initial solution consists of an isentropic expansion, smoothly distributed on

-6.5 < x < -5.5, with constant states, If, and U2 , on the right and left, respectively.

The strength of this rarefaction is determined by requiring a mean temperature

change of ±5 percent across the wave and supersonic flow on either side. The problem
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is nondimensionalized with respect to the mean solution. For t > 0, the rarefaction
wave moves to the right, and its behavior is monitored within the nonuniform region

of the mesh until t = 4.0.

Both algorithms used here are fourth-order accurate in the L, sense. Fig. 2
compares solutions for the two formulations by x-t contour plots of the density, for
0.0 < t < 4.0, on a mesh of 120 intervals with the C' transformation given by Eq. (6).
The freely adaptive stencil algorithm in Eq. (5) is employed. All of the contour plots
in this section represent the entire solution range, p, < p < P2, with 20 equally spaced
levels. The ENO-FD solution exhibits significant qualitative error in neighborhoods
about the second-derivative discontinuities in the mesh. In Fig. 2(b), such problems
are not apparent when the solution is computed with the freely adaptive ENO-FV-
PR algorithm.

Fig. 3 depicts the use of the same fourth-order ENO-FD algorithm on the 06

grid generated by Eq. (7). With the required mesh smoothness to support the
reconstruction, no visible distortions appear as on the C' grid. However, the fourth-
order design accuracy is not achieved for this solution when density error is measured
with respect to the L, norm in a region to the left of the rarefaction at t = 4.0. The
same accuracy problem was found with the freely adaptive ENO-FV-PR scheme. The
results of both mesh-refinement studies are shown on a log-log plot in Fig. 4(a). The
spatial discretizations employed in this study are 120, 240, 480, and 960 intervals.
The numbers on the loci represent the computational order of accuracy as measured
between the two finest meshes.

A similar loss-of-accuracy phenomenon was reported by Rogerson and Meiberg9 ,
which prompted a response from Shu1° that the problem arises by allowing the
stencil to adapt too freely. Shu has suggested that the stencil adaptation algorithm
be modified to bias the stencil towards one that is stable, in the sense of linear
stability analysis. In the present application, the resulting stencil is one which is
upwind biased. This biasing can be done by implementing a factor a in the stencil
search in Eq. (5), vis.

ik il1,, oeif aLI'S,-l < oR btl (9)
i'k-1, otherwise

where (aL, aR) = (1,a) or (a, 1), for biasing to the left or right, respectively, with

>1.

Fig. 4(b) shows grid-refinement results that are analogous to those in Fig. 4(a)

using the modification in Eq. (8) with a = 2.0; however, a fourth-order error reduction

5



is still not evident because the error is measurmd in a region where numerical

gradients are extremely small and ratios of neighboring gradients may be much

larger than the chosen biasing parameter. Atkins11 has suggested that an additional

constraint on the stencil adaptation is required. The purpose of this constraint is

to bias the stencil toward one that is stable wherever the solution is smooth. A

parameter installed for this purpose can be considered a lower threshold for the

magnitudes of the local differences {6b}, below which a stencil is forced toward

a stable target, regardless of the relative magnitudes of neighboring numerical

gradients. The present implementation of such a parameter can be written
if I i,_<c and jb'j<

then ik= "k (10)

where c is a small parameter, and i* defines the stable stencil at the k-th level.

Another grid-refinement study was performed, with Eqs. (8) and (9) wherein

a = 2.0 and f = 0.01. The results are shown in Fig. 5(a) and are much more consistent

with the scheme's design accuracy. In fact, the ENO-FV-PR algorithm, coupled with

the stenciling modifications in Eqs. (8) and (9), yields fourth-order computational ac-

curacy on the C1 grid, which is shown in Fig. 5(b). The second-order convergence

exhibited by the ENO-FD algorithm in this plot is expected. However, Fig. 6 shows

that the qualitative error in the ENO-FD solution on the C' grid, that was previ-

ously shown in Fig. 2(a), has been significantly reduced with these stencil biasing

modifications.

At this point, the apparently greater robustness of the ENO-FV algorithm can be

attributed to the fact that this formulation allows for a physical reconstruction that

is not available for the finite-difference algorithm. However, as previously noted,

multidimensional extensions for this more generalized operator can be complicated

and costly. Therefore, some results produced with the ENO-FV-TR algorithm will be

discussed. In Fig. 7(a), when the freely adaptive version of this algorithm is imple-

mented on the C6 grid, significant error exists that was not evident in the analogous

case for the ENO-FD solution in Fig. 3. This error is due to the reconstruction of

volume-weighted averages, in which a rapidly varying mesh will have an inordinate

effect on the stencil choice in a region of small solution gradients. However, biasing

the reconstruction stencils with Eqs. (8) and (9) is not enough to entirely rid the

solution of these grid distortion errors, as shown in Fig. 7(b). The problem is still

6



related to the reconstruction of volume-weighted averages, in particular to the fact

that a uniform flow is not preserved by this procedure if the analytic transformation

is used for the necessary discrete values {I x I. Therefore, instead of using Eq. (7b) to

compute the derivatives, these derivatives are numerically approximated in a man-

ner that enables the reconstruction operator to preserve the free stream exactly 5 .

The resulting solution, with this final modification, is shown in Fig. 7(c). In this

final form, the numerical accuracy of the ENO-FV-TR algorithm is found to perform

to design as shown in Fig. 8(a). The ENO-FD and ENO-FV-PR results from Fig. 5(a)

are repeated in Fig. 8(b), for comparison.

Two-Dimensional Channel Flow

The ENO-FD and ENO-FV algorithms are now compared in two spatial dimen-

sions. The test case involves a steady, subsonic flow in a channel of varying area.

Although high-order ENO schemes are clearly designed with unsteady solutions in

mind, many such solutions of interest can be considered as the imposition of per-

turbations upon a steady flow. It is therefore essential that a steady flow be accu-

rately predicted in order to obtain meaningful results from unsteady problems of an

aeroacoustic or transitional nature. Unless otherwise stated, the remainder of the

applications of the ENO-FV algorithm will involve the TR type of reconstruction.

This channel flow solution is assumed to be governed by the two-dimensional

Euler equations and is computed with both the ENO-FD and ENO-FV algorithms

on two different geometries. For the two channels under consideration, the length-

to-height ratio is L/H = 1.5, with constant-area sections fore and aft of a section

of varying area. Each constant-area section has length L/5; at the throat, the con-

striction is 10 percent of H. The most significant difference between the two geome-

tries is the order of smoothness to which the constant-area sections are connected

to the center section. Both channels can be described as follows. Let the rectangle

{0 <_ t _< L} x {0 _< i 5 H} denote the computational domain for each channel. The

identity maps (t, ,q) to the physical point (x, y), for t in [0, L/5] U [4L/5, L] and all j?.

On the interval {L/5 < t < 4L/5}, the geometry for the varying-area section is given

by a transformation of the form

X = t (1(a)

SI Y2(0+1 + H)y() (1ib)

where Yi(t) and Y2(e) are, respectively, the equations for the bottom and top walls.
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The first middle section considered is determined by walls of the form

yi(ý) = as sin" (bjý + ci) + di i 1,2 (12)

where the values of the coefficients are set for the desired throat constriction and

a smooth connection to the constant-area sections. Three continuous ý derivatives
of y exist at ý = L/5,4L/5, for all q/. Therefore, Eqs. (10) and (11) generate a C3

geometry. Fig. 9 illustrates this geometry on a 60x40 mesh. The second channel
geometry differs from the first only in that the walls in the middle section are given

by polynomials of the form

yj(ý) = ai + bj2 + cý4 , i = 1,2 (13)

In this case, the connections of the middle to the outer sections are continuous in

to only one derivative, for 0 < q < H.

The desired solution is that of a steady-state flow that is caused by a uniform,
parallel free stream entering the channel at x = 0. This solution is achieved by

solving the time-dependent Euler equations with the fourth-order algorithms. At
t = 0, the solution in the entire channel is set to free stream with a Mach number of
0.3. Tangency is imposed on the walls, and a non-reflecting boundary condition 12 is
applied at the inflow and outflow. The stencil-biasing modifications in Eqs. (8) and (9)
are essential for convergence of the solution to a steady state, and are implemented
with & = 2.0 and e = 0.01. Flux residuals were readily driven to machine zero in

both test cases.

These solutions were computed by both algorithms on a sequence of successively
refined grids, and the solutions' errors were determined by deviation from isentropy,
as measured by the quantity S = P/p'. The refinement sequence employed here
is 15x 10, 30x20, 45x30, 60x40, and 90x60. The results of the grid-refinement
study on the C3 geometry are shown in Figs. 10(a), (b),and (c). The "Global" er-
ror is computed over the entire computational domain, the "Wall" error is com-

puted only at the points along one wall, and the "Interior" error is computed on
{L/4 < < 3L/4) U {H/4 < 7 < 3H/4}. Both algorithms evidently perform at or near

design accuracy, as expected for fourth-order schemes on a C3 mesh.

In Figs. 10(d), (e), and (f) are the grid refinement results for the C' mesh.

As expected, second-order results are obtained on the wall for both algorithms.
However, the finite-volume algorithm performs at third-order accuracy with respect
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to the global error and at design accuracy on the interior, while the finite-difference

algorithm shows second-order accuracy in all three measures. These results suggest

that, for the ENO-FD algorithm, the second-order entropy error that arises from

the non-smoothness at the section connections is propagating into the interior. This

assumption is supported by Fig. 11, in which the quantity log S is plotted along the

center line of a 60x40 mesh. Clearly, in the finite-difference solution, there is a

lower-order entropy error within the middle section than exists in the constant-area

sections.

Oblique Sod's Problem

The final test under consideration is selected to compare the capabilities of the

two algorithms to resolve waves that are oblique to the computational mesh. Sod's
problem13 will be solved in two-dimensional space so that the planar waves produced

will propagate at various angles of incidence with respect to a rectangular grid. The

intent is not only to inspect the qualitative resolution of the oblique waves, but also

to quantify the manner in which each algorithm detects an oblique wave with respect

to its detection of a wave that is normal to the metn.

Sod's problem is a Riemann problem which is subject to the solution of the Euler

equations and determined by initial conditions that consist of a thermodynamic

discontinuity imposed upon a fluid at rest. The magnitudes of the density and

pressure jumps are, from left to right, PLIPR = 8 and PLIPR = 10, respectively.

Such an initial solution is installed on a two-dimensional Cartesian grid so that the

discontinuity is a straight line that makes an angle 0 with the x axis. The physical

mesh varies with 0 in the following manner. A computational mesh is defined on

the rectangle [0, LI x [0, H], with a length-to-height ratio LIH = 6. If 0 < 0 < 7/2,

then the physical domain is {0 < x < Le} x {0 < y < He}, and is determined by

He = H/sin0 and Le = L/sin 6. This scaling achieves the same grid resolution

normal to the wave propagation on a given mesh at some fixed time for all choices

of 0. The mesh discretization in each direction is chosen such that Ax = Ay.

At t = 0, the initial discontinuity is positioned at (x, y) = (3L/8, 0) an( inclined

at the angle 0. The angles of inclination are chosen so that tan 0 is an integer and

that the boundary conditions at y = 0 and y = He can be determined in a "shifted-

periodic" manner. In particular, the test angles are 6 = arctan 1, arctan 2, and arctan 4,

in addition to the one-dimensional problem 0 = ?r/2. The solution is computed to

t = 1.2 The stencil biasing in Eq. (8) is used in the reconstruction procedures with
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- 2.0.

Fig. 12(a) represents the solution at t = 1.2, on a 96x 16 grid, with 0 = arctan 1,

with the use of the ENO-FV algorithm. The three wave structures are, from left to
right, an expansion wave, a contact discontinuity, and a shock. The axis variables x'

and y' represent the physical coordinates scaled by sin 0. Fig. 12(b) depicts the same

solution as in Fig. 12(a), for both algorithms, along the grid line y' = 0. On this level,
the qualitative difference between the solutions is barely detectable. Therefore, in

Fig. 13, the solutions are examined in the vicinity of the contact discontinuity for

all test values of 0. (The successive loci in this plot have been shifted upward and

to the right.) Although the ENO-FV scheme produces a slightly steeper numerical

gradient at the location of the discontinuity, such a small difference can be judged
insignificant. Fig. 13, then, suggests that both algorithms perform equally well
with respect to oblique waves irrespective of 0. On a more quantitative level,

the differences between the oblique cases and the one-dimensional case, for each

algorithm, have been measured. These results are plotted in Figs. 14(a) and 14(b).
By this measure, the finite-volume scheme performs marginally better, particularly

with respect to the rarefaction wave.

Cost Comparison

As with any numerical algorithm, the cost of implementing either the ENO-FD
or ENO-FV scheme is a major concern. Conceptually, the two formulations can be

made equally cost effective for high-order solutions of one dimensional problems or for
first or second-order accurate solutions in multiple dimensions. However, for third

or higher-order accuracy in two or more dimensions, the algorithms are radically

different. This difference translates to a significant disparity in cost.

With regard to cost, the ENO-FD algorithm has a clear advantage when applied
to multidimensional problems. This advantage can be entirely attributed to the fact

that the finite-difference operator solves a system of equations in a pointwise man-
ner. In this case, a high-order multidimensional reconstruction can be accomplished

in a dimension-by-dimension fashion. If the algorithm is r-th order accurate in the

L, sense, then the reconstruction stencil in k dimensions contains k(r - 1) + 1 points.
The dimension-by-dimension approach to reconstruction is not possible within the
finite-volume formulation, if third-order or better accuracy is required. Because the

solution at any time is in the form of cell averages, the multidimensional ENO-FV-

TR reconstruction is implemented as a product of one-dimensional operators, and
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thereby requires rk cells in a reconstruction stencil. Moreover, the Gaussian quadra-

ture used to integrate the flux on each cell boundary requires multiple solutions

of the Riemann problem on each cell interface. The number of points nq required

in this quadrature on an interface is n.q [= int ((r+1)/2)]k 1 , where int (.) denotes

integer truncation. This high-order quadrature is entirely avoided within the finite-

difference approach. It should be noted that both formulations require the same

amount of logic in the stencil adaptation, which is the most expensive part of either

algorithm.

Fig. 15 depicts the relative CPU cost of the two algorithms, for solutions of

the Euler equations in two dimensions, for 2nd, 3rd, 4th, and 5th-order accurate

applications. CPU times were measured on a Cray-YMP and normalized with

respect to the 2nd-order ENO-FD cost. An estimated cost comparison for three-

dimensional problems can be obtained by the following reasoning. For a specified

order of accuracy, let C, denote the cost of solving one equation at a point in one

dimension; this is the same for either algorithm. Then, because of its dimension-by-
dimension implementation, the estimated cost incurred by the ENO-FD algorithm

in solving the Euler equations in k dimensions on a grid of Nk points is

CFD = C, (k + 2) k N' (14)

This formula predicts a cost-per-point increase factor of 8/3 when the one-dimensional
ENO-FD algorithm is extended to two dimensions. This value has been supported

by computer measurements. The corresponding factor for the extension from two to

three dimensions is 15/8. The estimation of a three-dimensional cost for the ENO-

FV algorithm cannot be done by such a simple linear extrapolation. There are two

significant costs in addition to the base value given by Eq. (13). One is the extension

of the finite-volume reconstruction to a three-dimensional product. The other arises

from the additional 3 (n. - 1) flux computations that are required in the integration

over the surface of each cell. These additional costs were extrapolated from two-

dimensional CPU measurements on a Cray-YMP. Fig. 16 represents the estimated

three-dimensional cost comparison where, again, the data are normalized by the

2nd-order cost.

Concluding Remarks
For accuracy on a sufficiently smooth mesh and resolution of oblique waves, both

algorithms perform equally well. The finite-volume implementation is less sensitive
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to derivative discontinuities, whether in the computational mesh or in the solution.

In particular, the ENO-FV-PR algorithm has the capacity to perform at design

accuracy, independent of the mesh. Although the generalized multidimensional

adaptive-stenciling implementation of this algorithm has not sufficiently matured,

some promising results can be found in Ref. 8. Either of the multidimensional finite-

volume algorithms is significantly more costly than the finite-difference algorithm.

Therefore, if, for a given application, the computational domain is known to be

sufficiently smooth and can be suitably structured, then the ENO-FD algorithm is

the method of choice. However, for problems with complex geometries, it might pay

to use the more expensive algorithm if the grid is significantly less costly to generate

in a less restrictive fashion.
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Fig. 1. (a) The transformations of Eqs. (6) and (7). (b) Normalized derivatives of Eqs. (6) and (7).
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Fig. 3. Density, on the C' mesh, ENO-FD, freely adaptive stencil.
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Fig. 5. L1 density error, t = 4.0. (a) CO grid, biased stencil (8 = 2.0, = 0.01). (b) C1 grid, biased stencil
(8 = 2.0, e = 0.01).
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